1) Find the directional derivative of f at the given point in the direction indicated by the angle θ.
a) $f(x, y)=x^{2} y^{3}-y^{4},(2,1), \theta=\frac{\pi}{4}$
b) $f(x, y)=x \sin (x y),(2,0), \theta=\frac{\pi}{3}$
2) Find the directional derivative of the function at the given point in the direction of the vector $\overrightarrow{\mathbf{v}}$.
a) $f(x, y)=\ln \left(x^{2}+y^{2}\right),(2,1), \overrightarrow{\mathbf{v}}=\langle-1,2\rangle$
b) $f(x, y, z)=\frac{x}{y+z},(4,1,1), \overrightarrow{\mathbf{v}}=\langle 1,2,3\rangle$
3) Find the directional derivative of the function $g(x, y, z)=x y e^{z}$ at $P(2,4,0)$ in the direction of $Q(0,0,0)$.
4) Given the function $f(x, y)=y \ln x, P(1,-3)$, and $\overrightarrow{\mathbf{u}}=\left\langle-\frac{4}{5}, \frac{3}{5}\right\rangle$ find the following:
a) The gradient of f.
b) The gradient at the point P.
c) The rate of change of f at P in the direction of the vector $\overrightarrow{\mathbf{u}}$.
5) Find the maximum rate of change of f at the given point and the direction in which it occurs.
a) $f(x, y)=\frac{y^{2}}{x},(2,4)$
b) $\quad f(x, y, z)=\tan (x+2 y+3 z),(-5,1,1)$
6) Find the directions in which the directional derivative of $f(x, y)=x^{2}+\sin x y$ at the point $(1,0)$ has the value 1 .
7) Find all points at which the direction of fastest change of the function $f(x, y)=x^{2}+y^{2}-2 x-4 y$ is $\mathbf{i}+\mathbf{j}$.
8) Suppose that over a certain region of space the electrical potential V is given by $V(x, y, z)=5 x^{2}-3 x y+x y z$.
a) Find the rate of change of the potential at $P(3,4,5)$ in the direction of the vector $\overrightarrow{\mathbf{v}}=\mathbf{i}+\mathbf{j}-\mathbf{k}$.
b) In which direction does V change most rapidly at P ?
c) What is the maximum rate of change at P ?
9) If $f(x, y)=x^{2}+4 y^{2}$, find the gradient vector $\nabla f(2,1)$ and the use it to find the tangent line to the level curve $f(x, y)=8$ at the point $(2,1)$.
10) If $g(x, y)=x-y^{2}$, find the gradient vector $\nabla g(3,-1)$ and the use it to find the tangent line to the level curve $g(x, y)=2$ at the point $(3,1)$.
