1) Find the directional derivative of f at the given point in the direction indicated by the angle θ .

a)
$$f(x, y) = x^2 y^3 - y^4$$
, (2,1), $\theta = \frac{\pi}{4}$

b)
$$f(x, y) = x \sin(xy), (2,0), \theta = \frac{\pi}{3}$$

2) Find the directional derivative of the function at the given point in the direction of the vector $\vec{\mathbf{v}}$.

a)
$$f(x, y) = \ln(x^2 + y^2)$$
, (2,1), $\vec{\mathbf{v}} = \langle -1, 2 \rangle$

b)
$$f(x, y, z) = \frac{x}{y+z}$$
, (4,1,1), $\vec{\mathbf{v}} = \langle 1, 2, 3 \rangle$

3) Find the directional derivative of the function $g(x, y, z) = xye^z$ at P(2,4,0) in the direction of Q(0,0,0).

- 4) Given the function $f(x, y) = y \ln x$, P(1, -3), and $\vec{\mathbf{u}} = \left\langle -\frac{4}{5}, \frac{3}{5} \right\rangle$ find the following:
 - a) The gradient of f.
 - The gradient at the point P.
 - The rate of change of f at P in the direction of the vector $\vec{\mathbf{u}}$.

- 5) Find the maximum rate of change of f at the given point and the direction in which it occurs.
 - a) $f(x, y) = \frac{y^2}{x}$, (2,4)
 - b) $f(x, y, z) = \tan(x + 2y + 3z), (-5, 1, 1)$
- 6) Find the directions in which the directional derivative of $f(x, y) = x^2 + \sin xy$ at the point (1,0) has the value 1.

7) Find all points at which the direction of fastest change of the function $f(x, y) = x^2 + y^2 - 2x - 4y$ is $\mathbf{i} + \mathbf{j}$.

- 8) Suppose that over a certain region of space the electrical potential V is given by $V(x, y, z) = 5x^2 3xy + xyz$.
 - a) Find the rate of change of the potential at P(3,4,5) in the direction of the vector $\vec{\mathbf{v}} = \mathbf{i} + \mathbf{j} \mathbf{k}$.
 - b) In which direction does V change most rapidly at P?
 - c) What is the maximum rate of change at P?

9) If $f(x, y) = x^2 + 4y^2$, find the gradient vector $\nabla f(2, 1)$ and the use it to find the tangent line to the level curve f(x, y) = 8 at the point (2, 1).

10) If $g(x, y) = x - y^2$, find the gradient vector $\nabla g(3, -1)$ and the use it to find the tangent line to the level curve g(x, y) = 2 at the point (3,1).